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We propose a novel binaural data set

● Acoustic environment recognition
● Suitable for the needs of hearing aids
● Experimental validation by a group of

    baseline deep neural networks

Hearing Aid Research Data Set
for Acoustic Environment Recognition

(HEAR-DS)
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● Hearing aids provide several programs for different acoustic environments for 
enhancing the quality and intelligibility of speech.

● Reliable real-time recognition of current acoustic environment is essential.

● Limited computational resources:
– Only simple, low-level features

– compared with pre-defined threshold

– to decide about the acoustic environment

● Even state-of-the-art hearing aids are limited in recognizing acoustic environments.

People can’t follow conversations in 
difficult environments

Current Situation
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With machine learning, different noisy acoustic 
environments can be recognized

Machine Learning towards Hearing Aids

and then optimally suppressed, which in return 
yields a better intelligibility and quality of speech.

With machine learning, different noisy acoustic 
environments can be recognized
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Internet of Things (IoT) approach

● Connect many wearers with each other
● Computational burden, 

e.g. training of neural networks, 
is delegated to a cloud computing system.

● Hearing Aid
– performing only the recognition (not the training)
– using the trained model only in forward mode 
– feasible challenge even inside computational limits of a hearing aid.
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  Training Data

● To train such models, a large training data set is required.
● Existing data sets 

– DCASE [1], MsoS [2], LITIS [3], ChiME [4,5], MIREX [6], Freesound [8] 
etc.

– define label scenes according to the location

● Hearing aids need to group similar acoustic features together as 
acoustic environments

● HEAR-DS: suitable for the needs of hearing aids
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Audio Recording

● binaural recordings with hearing aid on Artificial Head

– with adjustable ear canals (DADEC [9])
equipped with G.R.A.S. KB 1065/1066 Pinnae 

– ITC 2 mics (L/R) 

– BTE 4 mics (L/R, each front/rear)

● Pre-Amp (for each mic) 

– with fixed amplification factor 100

● Focusrite Scarlet 18i6 soundcard

– at 48 kHz in 32-bit PCM
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Audio Material

slicingmanual cutting

Audio CutRaw Audio
Audio Snippet

(10s)

Mixing, at multiple SNR,
with speech from CHiME 

2013 [4] 

Audio Snippet
(10s)

Pure background

Audio Snippet
(10s)

Speech in background
at multiple SNR 
[-10,-5,0,5,10]



9

 Structuring for Machine Learning

...

Acoustic Environment

Recording
Situation

Recording
Session

Audio Snippets

Recording
Session

Audio Snippets

...

Recording
Situation

Recording
Session

Audio Snippets

Recording
Session

Audio Snippets

...

In Vehicle
rec_id_501_berlingo_II_diesel_1

rec_id_501_cut_28_engine_rumble

rec_id_501_cut_03_noises_startengine

rec_id_502_skoda_fabia_ottoengine_1

rec_id_503_vw_t5_diesel_caravelle_1

rec_id_501_cut_35_engine_highway
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HEAR-DS Environments
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HEAR-DS Environments

Music: GTZAN  [7],
resampled to 48kHz
convolved with binaural 
head-related transfer function 
(Kayser [10]) 

Interfering speakers:  
CHiME 2018 [5] Speech for mixing:  

CHiME 2013 [4] 
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Validation Experiment

● Goal: Show separability of acoustic environments
by deep neural networks

● Challenge: 
– lightweight networks
– still reach good recognition rates

● series of classification experiments with decreasing 
complex  deep neural networks



14

Challenge

● Streamlined small 
but still accurate DNNs

● optimized for low computational resources 
● for real-time capable applications
● toward hearing aids
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 Feature Extraction
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Network Architecture: Topology

cnn 1|2
1)  nn.Conv2d()
2)  nn.BatchNorm2d()
3)  nn.ReLU()
4)  nn.MaxPool2d()
5)  nn.Dropout()

out
1)  nn.Linear()
2)  nn.Dropout()
3)  nn.Linear()

Optimizer:
torch.optim.SGD
+ 
nn.CrossEntropyLoss
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Decreasing Complexity of  Network Architectures
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Experiment Results
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Live Evaluation System

● NUK mini PC

● C++

● importing pre-trained
PyTorch-model 

● audio induced via
loudspeaker over hearing aid

● Net-32 takes < 0.4s 
to recognize 10s audio

More in the show and tell session ICASSP 2020, Thu 7. May 11:30 
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Conclusions

● Provided results show
– validity of the data set
– the data set can be classified
– live audio recognition on a mini PC

● Further research needed 
– HEAR-DS enables researchers to test 

algorithms on different acoustic environments
– optimize DNNs for hearing aids

● Robustness
● Real-time
● limited computational capability

● Make use of HEAR-DS [11]

– We provide the Data 
anything that can be made free is made free https://www.hoertech.de/en/research/open-tools-for-science.html
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